Macroecology and macroevolution
Macquarie University

Recent papers

A simple Bayesian method of inferring extinction. Paleobiology (in press).

Accurate and precise estimates of origination and extinction rates. Paleobiology (2014).

On the flux ratio method and correcting incorrect forms of correct equations. Palebiology 37:710-711 (2011).

Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:1211-1235 (2010).

Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. In J. Alroy and G. Hunt (eds.), Quantitative Methods in Paleobiology. Paleontological Society Papers 16:55-80 (2010).

The shifting balance of diversity among major marine animal groups. Science 329:1191-1194 (2010)

Speciation and extinction in the fossil record of North American mammals. Pp. 301-323 in R. Butlin, J. Bridle, and D. Schluter, (eds.), Speciation and Patterns of Diversity. Cambridge University Press, Cambridge (2009)

I am a Future Fellow in the Department of Biological Sciences at Macquarie University in Sydney, where I oversee the Ecological Register, Fossilworks, and the annual analytical palaeobiology workshop.

Greatest hits

Dynamics of origination and extinction in the marine fossil record. PNAS 105:11536-11542 (2008)

How many named species are valid? Proceedings of the National Academy of Sciences 99:3706-3711 (2002)

A multi-species overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292:1893-1896 (2001)

New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26(4):707-733 (2000)

Cope's rule and the dynamics of body mass evolution in North American mammals. Science 280:731-734 (1998)

My research focus for many years was diversity curves, speciation, and extinction, with most of my publications being about Cenozoic North American mammals or (under duress) Phanerozoic marine invertebrates. But I have finally seen the light at the end of the Phanerozoic and have turned my attention to quantifying diversity and extinction at this very moment.

My latest greatest methods are the gap filler turnover rate equations, the creeping-shadow-of-a-doubt Bayesian extinction probability equation (say that a few times fast), and the rescaled Forbes index. All of which are top secret. But before that came shareholder quorum subsampling, which at the moment is functionally still a secret despite having been described in three different papers. Try running it on your ecological count data with this simple R function - if you dare. And for the more ambitious, there's always the option of downloading the fossil record of everything and crunching it to smithereens with the Fossilworks built-in diversity curve generator.

I also have projects concerning contemporary extinction rates, community ecology, body mass evolution, molecular clock calibration, zoo finances, and early childhood development. Note: there are no joke entries in that list. Anyway, I maintain an interest in late Quaternary megafaunal extinctions, and as a young'un I worked on quantitative methods of time scale construction.

I am a graduate of Reed College and the Committee on Evolutionary Biology at the University of Chicago. Between 1994 and 1996 I was a post-doctoral fellow in the University of Arizona's Research Training Group in the Analysis of Biodiversification, which was affiliated with the Department of Ecology and Evolutionary Biology. Between 1996 and 1998 I had yet another post-doc with the Smithsonian Institution's Department of Paleobiology and Evolution of Terrestrial Ecosystems program. And between 1998 and 2010 I was a lost soul at the National Center for Ecological Analysis and Synthesis in Santa Barbara.

If that's not enough, my CV gives all the gory details. And if you simply must know right now you can cast an e-mail into the ether using this very special address: <john dot alroy at mq dot edu dot au>.

And yes, I think that someday the Mets will win the World Series.

Old favorites

Are Sepkoski's evolutionary faunas dynamically coherent? Evolutionary Ecology Research 6(1):1-32 (2004)

Taxonomic inflation and body mass distributions in North American fossil mammals. Journal of Mammalogy 84(2):431-443 (2003)

Putting North America's end-Pleistocene megafaunal extinction in context: large scale analyses of spatial patterns, extinction rates, and size distributions. Pp. 105-143 in R. D. E. MacPhee (ed.), Extinctions in near time: causes, contexts, and consequences. Plenum, New York (1999)

The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Systematic Biology 48(1):107-118 (1999)

Alroy's Abbreviated Ten Statistical Commandments

Overarching themes

• Log thy data

• Life's but a gradient

• See the nonparametric light

• Disdain p-values

• Maximize a posteriori

Diversity curve variations

• Abhor tiny time series

• Detrend thy time series

• Sample fairly, if not uniformly

• Count only thy sampled taxa

• The secret of life is... gap fillers

great apes