Summary

The latitudinal gradient of species diversity is a nearly universal pattern (Brown 1995) and latitude has been said to have the "boldest signature" with respect to the spatial distribution of biodiversity (Lewin 1989, Gaston 1996). In fact, the inverse relationship between species richness and latitude is known from a diverse set of taxa, including vertebrates (mammals--Simpson 1964, Kaufman and Willig in press; birds--Cook 1969, Blackburn and Gaston 1996; herptiles--Kiester 1971, Rosenzweig 1995; fish--Macpherson and Duarte 1994, Oberdorff et al. 1995), non-vertebrate chordates (tunicates--Fischer 1960), invertebrates (ants--Brener and Ruggiero 1994, papilionid butterflies--Scriber 1973, termites--Collins 1989, crayfish--France 1992, amphipods--France 1992, gastropods--Rex et al. 1993, coral--Fischer 1960), protozoans (fossil foraminiferans--Stehli et al. 1969) and plants (columnar cacti--Mourelle and Ezcurra 1997, fossil angiosperms--Crane and Lidgard 1989, trees--Currie and Paquin 1987, orchids--Dressler 1981). Although many studies appear each year on this topic, progress to ascertain a convincing general underlying mechanism has been stymied. The current ecological approach to research on the latitudinal gradient suffers from a lack of rigor and creativity in the examination of the pattern and in the quest for the process (detailed below). In addition, progress should be enhanced by capitalizing on new technologies to handle large datasets and perform comparative research across taxa to search for generalities.

Problem Statement

Although the latitudinal gradient of species diversity is pervasive, 30 years of intensive research has yielded no general explanation for the pattern. I propose to address four problems that I see in current approaches to research on the latitudinal gradient. The first two issues relate to the pattern itself: shape and components. First, the latitudinal gradient usually is characterized only as a simple relationship between species richness and latitude; little attention is paid to the mathematical form of the relationship. Second, the latitudinal gradient is typically characterized simply as a pattern of species richness; there is little exploration of other related latitudinal patterns. One exception is Rapoport's rule, the positive
relationship between geographic range size and latitude (Stevens 1989), although this relationship has been challenged of late (e.g., Gaston et al. in press). The final two issues relate to the elucidation of the causal process itself: generality and testability. Third, the simplest starting point is the idea that the ubiquity of the latitudinal pattern of diversity is due to a common mechanism. However, many of the hypothesized explanations apply only to a restricted set of places, times, or taxa. Fourth, current hypotheses (see Rohde 1992) predict only the inverse relationship between species richness and latitude that is already known to exist; predictions unique to a hypothesis or set of hypotheses must be devised and tested to narrow the possible field of causal mechanisms. With recent advances in geographic information systems, it is possible to address these issues in a quantitatively rigorous manner, including development of theoretical models and evaluation via empirical tests.

Description of the Latitudinal Pattern: I propose to compile data on the distributions of a number of taxa to be incorporated into a GIS for use in spatially explicit analyses. I have compiled distributions for all mainland New World mammals (~1500 species) that are ready to be digitized into GIS. In addition, other organismal datasets are available for examination (e.g., North American Breeding Bird Survey, Cogger 1994, Turner et al. 1995). Rigorous quantitative analyses of various vertebrate, invertebrate, and plant groups will provide a comprehensive examination of the pattern and allow me to look for generalities (such as the mathematical form or the existence of corollary patterns such as Rapoport's rule). Specific questions include the following, to be addressed for each individual taxonomic group and compared amongst groups to reveal any general phenomena.

- What is the form of the relationship between species richness and latitude? Is there a single linear gradient, a different relationship within and outside the tropics, or no gradient at all?
- Do significant latitudinal patterns occur consistently across all levels of diversity (alpha—local richness, beta—species turnover, gamma—regional richness)?
- Are there significant latitudinal patterns in variables other than species richness, such as geographic range (Rapoport's rule), numerical dominance in communities, or smoothness of range edges?
- Are there differences in patterns between animals and plants, endotherms and ectotherms, marine and terrestrial organisms, flying and nonvolant animals?

Evaluation of Possible Underlying Processes: It is difficult to determine the ecologically significant effects of "latitude" and this is the crux of the problem in discerning the causes for the latitudinal diversity gradient. Too many times latitude is dismissed as not being a real variable. Remember that, although latitudinal parallels are a human construct, they do reflect physical features of geography. Latitude characterizes the rotation of the earth on its axis, the tilt of the earth
relative to the sun, and the input of solar energy. (Only areas between the Tropics of Cancer and Capricorn—the tropics—ever receive solar radiation which falls perpendicularly on the earth; this produces the most intensive heating of the earth's surface. Within the Arctic or Antarctic Circle, sunlight is delivered at a low angle and heating is minimal.) So, is latitude primarily a variable that quantifies input of solar radiation to the earth's surface? Or, is it a more complex variable that encapsulates global patterns of temperature, precipitation, and productivity? Does it incorporate a multiplicity of interacting factors that would not be as meaningful if considered individually? To address these issues, solar input will be modeled in a realistic manner across geographic space, incorporating digital elevation models, cloud cover patterns, etc. This is will enable me to examine the relationship between latitude and the input of solar radiation or other environmental variables to see how these variables relate to species patterns and if they quantitatively capture latitude through statistical explanation of organismal patterns.

Use of GIS will allow me to analyze environmental data (such as temperature, precipitation, productivity, etc.) in a spatially and geographically explicit context in order to characterize the environmental template on which species distributions are overlain. There are practical and conceptual questions about how species are affected by their environment. For example, what environmental conditions are most important to the organism (likely to be taxon-specific): mean conditions, general variability, extremes, or threshold conditions? What metrics best encapsulate the ecological influences of the environment? To assess the direct importance of the abiotic factors, I will evaluate taxonomic groups to see if richness patterns have tight and consistent links to specific environmental variables. In addition, I would like to assess how biotic interactions among species may affect species richness and may be related to latitude. Measuring biotic interactions is difficult and we have little information how they vary over geographic space. One possibility for measuring interaction involves parasitism. I currently am attempting to obtain data on the relationship between latitude and the number of parasite species within single host species. The discovery of an inverse relationship would supply a biotic mechanism by which species packing, and thus the number of species, is increased in the tropics.

Further, research such as Connell's (1961) intertidal study of the interaction between abiotic and biotic effects on species distribution establish what might be a parallel to the latitudinal gradient (Brown et al. 1996). To test this possibility, I will evaluate an abiotic-biotic hypothesis that invokes a combination of abiotic and species-interaction mechanisms as causes for the latitudinal pattern. Briefly, Kaufman (1995) proposed that abiotic factors are most limiting at high latitudes and decrease in importance toward the tropics, whereas biotic interactions are most limiting in the tropics and decrease in importance as abiotic factors become limiting. Abiotic factors limit the number of
species directly through increased physiological stress and indirectly through decreased productivity. In contrast, biotic interactions, within constraints set by productivity, limit the local abundance (or dominance in the community) and distribution of species, and thus provide opportunities for more species to coexist. Further, abiotic and biotic factors affect the distributions of individual species, with abiotic conditions tending to set the high-latitude range boundary, whereas biotic interactions set the low-latitude range boundary. This abiotic-biotic mechanism predicts several other phenomena to vary in concert with latitude: species' range size (positive; Rapoport's rule), level of dominance of the most common species (positive), and range characteristics such as the variability of the edge (negative).

Development of Theory and Conceptual Approaches: To address the questions elaborated above, I will develop new statistical approaches or incorporate those of others presently being developed. The current body of statistics does not deal with many aspects of testing for pattern in large-scale statistical distributions. Many ecological questions are not properly addressed by regression and correlation (which are appropriate for a single controlling factor) but require statistics sensitive to multiple interacting variables, each of which may be necessary but not sufficient or limiting but not controlling. For such research, it is important to establish rigorously any breakpoints or boundaries for distributions of points (Blackburn et al. 1992, Thomson et al. 1996). In addition, geostatistics provides techniques for analysis of spatial patterns and dynamics, and is ripe for application to ecology (Rossi et al. 1992, Liebhold et al. 1993, Villard and Maurer 1996). Randomization techniques also can provide a powerful tool to distinguish between deterministic patterns and random (null) distributions.

Rationale for NCEAS Support

This postdoctoral project combines theoretical modeling with empirical testing. In addition, the proposed work would help advance statistical methods for application to large-scale spatial ecology. Synthesis will occur both through quantitative analyses of latitudinal patterns for different taxa and empirical testing for a consistent link of environmental variables and theoretical mechanisms of proposed causes. The Center seeks to support novel approaches to address pertinent ecological issues; my project certainly falls under this objective. This research is data-intensive and requires the type of state-of-the-art GIS facilities that the Center provides. In addition, I foresee collaboration with those at the National Center for Geographic Information and Analysis. Finally, this research complements that of the "Ecological and Evolutionary Dynamics of Species' Borders" working group, as both research agendas require us to confront issues dealing with distributions and their edges, statistical and
modeling issues, and related spatial aspects in their application. As a postdoctoral associate, my performance as a member of the Species’ Borders working group would be enhanced and vice versa.

Proposed Activities and Timetable

I propose to begin this postdoctoral research 1 September 1998, with a 2-year total duration for the project. The initial 6 months will be spent gathering relevant datasets and scanning or digitizing organismal distributions as well as coverages for relevant environmental data. The next year will be spent analyzing data, exploring statistical approaches, and following up on results. In part, my results will be my guide, as each question answered will certainly outline new questions. In this time period, I will write papers on results from taxa that merit address in and of themselves. During the final six months, I will draw together significant results (both positive and negative) to be published as synthetic papers addressing relevant issues of the latitudinal gradient.

Anticipated Results and Beneficiaries

Why are there so many organisms in the tropics? This fundamental question of diversity has been asked repeatedly. I seek to make substantial progress in this area of ecology by forging a deeper understanding of the dynamics which lead to the pattern of distributions of species and by advancing statistical methodology as applied to large-scale and spatial ecological questions. I foresee writing several synthetic papers from this project, in addition to presenting the results at such meetings as those of the Ecological Society of America. I hope that this work, and interactions that it will foster, will help to integrate such sciences as ecology, geography, environmental science, and conservation biology.

Literature Cited

Proposal Keywords - please indicate keywords that apply to your proposal as instructed for each category below

1. Organizational Focus (pick 1)
 __
 x Global
 ___ Ecosystem
 ___ Community
 ___ Meta-population
 ___ Population
 ___ Organismal
 ___ Cellular
 ___ Molecular

2. Regional Focus (pick all that apply)
 ___ California
 ___ United States
 ___ Southwest
 ___ Northwest
 ___ Southcentral
 ___ Northcentral
 ___ Southeast
 ___ Northeast
 ___ Africa
 ___ Antarctic
 ___ Arctic
 ___ Asia
 ___ Australia/NZ
 ___ Canada
 ___ Central America
 ___ Europe
 ___ South America
 ___ Global

3. Ecological Theme (rank up to 3)
 __
 ___ amensalism
 ___ biodiversity
 ___ biogeography
 ___ commensalism
 ___ community dynamics
 ___ competition
 ___ complex systems
 ___ dispersal
 ___ disturbance
 ___ ecological economics
 ___ evolution
 ___ genetics
 ___ global change
 ___ methodological innovation
 ___ microclimate
 ___ mutualism
 ___ nutrient cycling

4. Taxonomic Group (pick all that apply)
 __
 x Plants
 x Invertebrates
 ___ other terr. inverts
 x marine inverts
 ___ aquatic inverts
 x Vertebrates
 x mammals
 x birds
 x reptiles/amphibians
 x fish
 ___ Microbes
 ___ Fungi

5. Methods (pick all that apply)
 __
 x Statistical modeling
 ___ Numerical Analysis
 ___ Simulation model
 ___ Visualization
 ___ Meta-analysis
 ___ Classification and Mapping
 ___ Other __GIS, geostatistics__

6. Research Application (rank up to 3)
 __
 ___ coastal resources
 ___ acid rain
 ___ agriculture
 ___ aquaculture
 ___ global warming
 ___ human population
 ___ land management
 ___ ozone
 ___ pollution
 ___ fisheries
 ___ forestry
 ___ energy

7. Biomes (pick all that apply)
<table>
<thead>
<tr>
<th>Topic</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>paleoecology</td>
<td>____________________</td>
</tr>
<tr>
<td>plant-animal interactions</td>
<td>x Marine</td>
</tr>
<tr>
<td>population dynamics</td>
<td>___ Benthic</td>
</tr>
<tr>
<td>predator-prey interactions</td>
<td>___ Pelagic</td>
</tr>
<tr>
<td>primary production</td>
<td>___ Intertidal</td>
</tr>
<tr>
<td>soil processes</td>
<td>___ Terrestrial</td>
</tr>
<tr>
<td>succession</td>
<td>___ Forest</td>
</tr>
<tr>
<td>parasitism</td>
<td>___ Grassland</td>
</tr>
<tr>
<td>symbiosis</td>
<td>___ Desert</td>
</tr>
<tr>
<td>Other</td>
<td>___ Wetlands</td>
</tr>
</tbody>
</table>