Classification and Regression Tree Example

Packages used

Data

library(rpart)
summary(cu.summary)

Grow tree

(fit <- rpart(Mileage~Price + Country + Reliability + Type,
 method="anova", xval=100, data=cu.summary))

(if you know you want to use all the variables other than the response variable as input variables, rpart(response~,...) will work) Note: If your data are binary and you are interested in performing a classification tree, method = "class"

printcp(fit) # display the results
plotcp(fit) # visualize cross-validation results

summary(fit) # detailed summary of splits
plot

plot(fit)
text(fit)

prune

cpval <- fit$cptable[which.min(fit$cptable[,"xerror"]),"CP"]
pfit<- prune(fit, cp=cpval)

plot(pfit)
text(pfit)
summary(pfit)

Pick your own tree size

dfit <- rpart(Mileage~., method="anova",
 maxdepth=2, data=bu.summary)

plot(dfit)
text(dfit)
summary(dfit)

(Code modified from Quick-R: Accessing the Power of R)

Multivariate Regression Tree Example

Data

Data Information

library(ade4)
data(doubs)
env=doubs$env
spe = doubs$fish

Transform response variables

The transformation consists of expressing each fish density as a proportion of the sum of all densities in the analytical unit and taking the square root of the resulting value (Legendre and Gallagher 2001). The square-root portion of the transformation decreases the importance of the most abundant species.

library(vegan)
spe.norm=decostand(spe, "hellinger")
Multivariate Regression Tree

```r
library(mvpart)
spe.ch.mvpart <- mvpart(data.matrix(spe.norm) ~ ., env,
                        xv="1se", xval=nrow(spe),
                        xvmult=100, which=4)
```

```
dfs< 1922    dfs>=1922
5.43: n=16
3.13: n=14
```

```
Error: 0.588  CV Error: 0.693  SE: 0.0905
```

```r
summary(spe.ch.mvpart)
printcp(spe.ch.mvpart)
```

Or we can use `pick`

```r
spe.ch.mvpart <- mvpart(data.matrix(spe.norm) ~ ., env,
                        xv="pick", xval=nrow(spe),
                        xvmult=100, which=4)
summary(spe.ch.mvpart)
printcp(spe.ch.mvpart)
```

- `xv` = Selection of tree by cross-validation:
 - "1se" - gives best tree within one SE of the overall best,
 - "min" - the best tree
 - "pick" - pick the tree size interactively,
 - "none" - no cross-validation.
• **xval** = Number of cross-validations or vector defining cross-validation groups (here we use as many rows there are in the dataset because it is a small dataset)

• **xvmult** = Number of multiple cross-validations.

• **which** = Which split labels and where to plot them, 1= centered, 2 = left, 3 = right and 4 = both.

(Modified R Code from “Numerical Ecology with R” by Borcard et al. 2012)