Spatial analysis

Huge topic!

Key references

Diggle (point patterns); Cressie (everything); Diggle and Ribeiro (geostatistics); Dormann et al (GLMMs for species presence/abundance); Haining; (Pinheiro and Bates 2000)

Point processes

• just looking at the distribution of (“unmarked”) points, asking whether they are clustered, random, regular (“overdispersed” !!)
• standard summary: Ripley’s K (number of points within radius r of a randomly chosen point, divided by the overall density); $L = \sqrt{K/\pi}$ should be linear …
 – have to deal with edge corrections: corrected estimators, null distributions via permutation tests

• tests of complete spatial randomness (CSR)

Lattices

I don’t have much to say here: data are often sampled this way but we more typically model them in continuous space, or on a graph

Graphs/networks

• Really more general than space: don’t even need to satisfy “spatial” properties (e.g. could be a social network rather than a spatial graph)
• different ways to represent spatial networks
 – neighbor list (with weights)
 – adjacency matrix (weighted)
• Deriving weights matrix W from spatial data (from Bannerjee presentation:
 – $=1$ if nearest neighbor (or n^{th} nearest neighbor?), 0 otherwise
 – polygons: “neighbor”=“share a boundary”, then as above?
 – $=1$ if distance < threshold
 – inverse-distance weighted (cutoff beyond some distance to make the matrix sparse?)
– exponential weighting (but need to choose decay parameter . . .)
– W doesn’t need to be symmetric

• Voronoi diagrams/Delaunay/Dirichlet tesselations

Random fields

• Random fields
• Point samples of a continuously varying field
• Gaussian random fields (multivariate normal with specified spatial correlation function)
• build non-Gaussian random fields on top of Gaussian RF; hierarchical models

Trend vs correlation

• stationarity, isotropy
• large- vs small-scale patterns
• mean models vs variance models
• (fitting small-scale spatial pattern via splines)

Not-really-spatial models

Two kinds of models that I don’t classify as spatial models:

• Models where the samples are taken spatially (i.e. measuring diversity vs rainfall from a bunch of plots, or environment and community samples in many plots (ordination etc.), but we just use space as a grouping factor, not considering which plots are closer to each other
• As above, but with x/y (lat/long, eastings/northings etc.) included as input variables, possibly with quadratic terms (\texttt{poly(x,y,degree=2)}) - in spatial statistics this is called trend surface analysis.
• in other words, truly spatial analyses take spatial relationships among points into account

Avoiding spatial analysis

• Non-spatial analysis; show that residual pattern is insignificant, biologically and statistically (maps, or e.g. Moran’s I)
• Aggregate data (buffering etc.) until aggregated observations are approximately independent
• Claim that spatial correlations don’t bias your estimates (true for linear models) and that the adjustment to the confidence intervals is not important (McGill)
• Dutilleul’s method?

Spatial diagnostics
• graphical: maps of residuals (e.g. size=absolute magnitude, red vs blue = positive/negative, or diverging color scale)
• semi-graphical: semivariogram or autocorrelation function

Analyses based on weight matrices
• Parallel with Ives and Zhu’s “generalized least squares” example: correlation matrix assumed known
• Moran’s I (analogue of lagged autocorrelation), Geary’s C
• Assume we are willing to specify the weight matrix W a priori
• Efficient matrix-based solutions: Conditional and simultaneous autoregression:
 – Non-spatial model: my house value is a function of my home gardening investment.
 – Conditional autoregression: my house value is a function of the gardening investment of my neighbours.
 – Simultaneous autoregression: my house value is a function of the house values of my neighbours.

Geostatistical models

Correlation models

(Semi)variance: $S(r_{ij}) = (x_i - \bar{x})(x_j - \bar{x})/2$.

• starts at the nugget; continues out to the sill
• Useful for exploration (mostly not for model fitting nowadays)
• Usually makes a giant, uninterpretable point cloud unless one bins the data or fits some kind of smooth curve
must obey constraints: **positive definiteness** (equivalent to ‘no negative variances’ or ‘no impossible correlation geometries’)

- typically use a small set of well-studied possibilities
 - classical: spherical, linear, exponential, Gaussian: each have a
 - newer: Matérn (includes exponential and Gaussian as special cases),
 powered exponential
 - all start at 1 (unless there’s a **nugget effect**), decrease eventually to zero; most are positive everywhere
 - spatial **variogram** or **semivariogram**; equivalent information but easier to compute
- spatial prediction: kriging

R packages

- **spdep**: weight matrices, Moran’s I, CAR/SAR
- **RandomFields**: simulating Gaussian RF of all types
- **nlme**: `g(n)ls` and `n]lme` can handle standard spatial autocorrelation structures (only within blocks)
- **ramps**: Bayesian MCMC fitting of geostatistical models. Also lots of additional spatial correlation structures, including basing correlation on great-circle distances

- **geoR**: spatial LMs and GLMMs (but without additional grouping structures)
- **ape**: correlation classes for phylogenetic correlations
- **INLA**: complex but powerful package for spatial (among others) fitting

AD Model Builder [spatial ex.], BUGS (GeoBUGS)